
«. « 

JE 

NAVY   DEPARTMENT 

THE  DAVID  W.  TAYLOR  MODEL  BASIN 

WASHINGTON  7,  D.C. |j  | 

■ tomtom* minm'Z 
Ajjptoved t» sobitc »kos* ®# 

STRESS DISTRIBUTION IN THE FLANGES 

OF CURVED T AND I BEAMS 

by 

ELECTS 

Hans Bleich, Vienna 

*^. 

January 1950 NSROO 1 ranslation 228 

APPROVED PQR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

|1   1108   081 
McQWircmsFBM®51 



Copies 

7 

INITIAL DISTRIBUTION 

Chief of the Bureau of Ships, Project Records (Code 362) 
for distribution: 

1 Technical Assistant to Chief of the Bureau (Code 10b) 
1 Research-Structures (Code 372) 
5 Project Records (Code 362) 

Chief of Naval Operations, Op-322P2 

A c 9« & * ^ *■ *■'**' **v j 

;"~H1:IS     GRAfcl 

I   *T  
;  Ci3trtbution/__  

rTvftllato u it7._CJ°^!L J 
t""""]Avaii and/er | 
JDiat    I    Epaela1 

C LIBRARY 



c 
o 
V 

STRESS DISTRIBUTION IN THE FLANGES OF CURVED T AND I BEAMS VJ 

(DIE SPANNÜNGSVERTEIIIJNG IN DEN GUETUNGEN GEKRÜMMTER                        V_) 

STÄBE MIT T- UND- I- FÖRMIGEM QUERSCHNITT)   

l/A 

■6 
by Q> 

V 
Hans Bleich, Vienna 

(Der Stahlbau, Beilage zur Zeitschrift "Die Bau- 

technik," Vol 6, No. 1, 6 January 1933, PP- 3-6) 

Translated by E.N. Labouvie, Ph.D. 

January 1950 Translation 228 

ISRDC LIBRA 



STRESS DISTRIBUTION IN THE FLANGES OF CURVED T AND I BEAMS 

Extreme fiber stresses in curved frames (Rahmenecken) are determined 

either according to Navier—as in the case of the straight beam--or 'better yet, 

according to the theory of the curved beam by Grashof and Resal. The latter 

appraises the extreme fiber stress of the concave side much more correctly than 

does the Navier method of calculation. This calculation of the curved beam 

is designed, however, for solid (cross) sections and has to be modified when 

applied to the T- and I-beam cross sections used in steel construction, since 

one postulate of this theory, namely the invariability of the shape of the 

cross section, is no longer fulfilled in these beam forms. 

If one considers a curved beam of 

rectangular cross section (as an example of a 

solid (cross) section), one observes that 

stresses running in transverse direction with 

respect to the longitudinal fibers, in addi- 

tion to the longitudinal stresses, are neces- 

sary in order to maintain equilibrium. We 

shall designate these stresses as transverse 

stresses. In the moment application represented 

in Figure 1 the transverse forces act from both 

surfaces toward the center and seek to compress the beam, 

formation is so slight that it does not influence the longitudinal stresses 

materially. The situation is quite different, however, in the case of thin- 

walled T and I cross sections. The projecting parts of the cross sections ap- 

pear to be subjected to bending stress due to the transverse forces (Figure 2) 

and therefore they deform in the manner indicated. Since the transverse dis- 

placements of the flange points are of the same order of magnitude as the flange 

elongations resulting from the bending of the beam, they influence the distri- 

bution of longitudinal stresses over the cross section a great deal. This is 

the same phenomenon as the one observed in the case of the thin-walled curved 

tube where the measured angles due to bending are several times as large as the 

angles which are to be expected according to usual theory.* 

The following investigations refer to T or I 

beams which are symmetric with respect to the plane of 

the web, the load plane of which coincides with the web 

plane. Let the flange of the beam under consideration 

have the radius of curvature r, and let the flange thick- 

ness d be small compared with the other cross-sectional 

  Figure 2 

Figure 1 

The resulting de- 

*v. Karmän:  The Deformation of thin-walled tubes etc. Z. d. Vdl 
1911, page 1889  (Journal of the Association of German Engineers etc.) 



measurements; then the longitudinal stresses a and the elongations e  will 

differ slightly at the upper and lower edge of the flange, so that we may 

carry on our calculations with the mean values ä and F. At a point at a dis- 

tance x (Figure 3) from the plane of the web the stresses and elongations are 

äx and T,. The deflection of the flange at this point is y . If one takes 

out a flange piece of the length ds, the cross-sectional planes include an 

angle d<£.* If the beam is subjected to a load, this angle increases by id#. 

As a result, a flange fiber located directly above the web elongates by Ms 

(Figure 4), so that the elongation per unit length there amounts to 

Ads 
ds 

v „ 
~-^£" 

Figure 3 

Jds, 

Figure 4 

"Jds-yx dp 

A strip located at a distance x from the web plane has deflected by y , and 

its center axis has assumed the position which is indicated in dotted lines in 

Figure 4. If magnitudes of a higher infinitesimal order are neglected this 

fiber has elongated by dds - yxd^; its elongation per unit length therefore is 

AdS 
ds —yx 

dip   Ads 
ds ds 

The stress directly above the web is 

= E*=E. Ads 
ds [1] 

and the stress at the distance x from the plane of the web is 

.(Ads     yx\ 
\~sr   —) 

yx\   - 
ds r j     "m r [1 '] 

While the longitudinal stress in the center and at the surface of the 

flange is kept constant, if one disregards the cross-sectional deformation, 

Equation [V] yields a decrease of the longitudinal stresses ax  as y increases, 

i.e. as the distance from the web plane increases. 

To complete the task before us, it is necessary to set up an addi- 

^ and p  (Figure k)  are the same. 



tional relationship between a^ and yx other than that in Equation [1 »] For 

this purpose, we shall first calculate the magnitude of the transverse forces 

in the beam. Let the force S flow in a fiber with the radius of curvature r. 

Prom Figure 5 one obtains the trans- 

verse force in the length ds, 

A = S • d <p 

The transverse force per unit of length 

is therefore 

a = s'~dl-T Figure 5 

A force S = 7xä flows in a 
flange strip of unit width (Figure 6); therefore the flange is subjected to 

a transverse force 

d„d 
P = 

per unit of area. 

v\ ■ML 
h  _fc 

Figure 6 
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Figure 7 

If one takes out a strip of unit width, measured in the longitudinal direc- 

tion of the beam, the flange of the beam can (for reasons of symmetry) be con- 

sidered as a cantilever rigidly fixed at the web, which is subjected to the 

load 

F r r \ m r 

The differential equation of the deflection curve of this beam reads 

d*yx 
EJ- 

dx* ■=P 

If one substitutes for J = f^ and for p the value obtained above> 
one obtains for yv the differential equation 

dx* 
12 

r2d2 ■yx = -E rd* 
[2] 



If one now measures x from the fixing point, the boundary conditions 
of this differential equation are 

for x = 0   v = 0, ""- = 0, 
ax 
dy =u 

[2<] 
for x = b   "y =o  *y-o 

dx*       '   dx*~~ 

The general solution of the differential equation [2] has the form 

r7m 
yv - ~sr~ +  Ci • sin «x • sinh ax + C2 • sin ax • cosh ax 

+ C3 • cos ax • sinh ax + C4 • cos ax • cosh ax, 

wherein a4 = —^—. The solution adapted to the boundary conditions [21] is _ _3_ 

r2d2 

X   E '   2 + cos 2ab + cosh 2ab 
• [2 • cosh ab • cos ax • cosh a(b - x) [3] 
+ 2 • cos ab • cos afb - x) • cosh ax 

+ sin ax • sinh a(2b - x) - sin a(2b - x) • sinh ax]). 
Prom Equations [1 '] and [3]  it follows that 

— "m ff
x ~ — — ;—-— [2 • cosh ab • cos ax • cosh a(b - x) 

[3>] 

2 + cos 2ab + cosh 2ab 

+ 2 • cos ab • cos a(b - x) • cosh ax 

+ sin ax - sinh a(2b - x) - sin a(2b - x) • sinh ax] 

In Figure 8 the stress distribution in the flange has been indi- 
cated for two special cases. The stress has its maximum value a    in the cen- 

m 
ter, above the web, and it decreases toward the edges. From the second rep- 
resentation in Figure 8, one gathers that we might even meet with a case 
where the stress at the edge has a different sign from the one above the web. 

For the purpose of further calculation, we shall now assume the 
flange of the width b to be replaced by a narrower flange in which, however, 
the stress a^  prevails everywhere and the width b' is chosen in such a man- 
ner that the total force in the beam remains unchanged. The equilibrium of 
the internal forces in the beam is not disturbed thereby, since the result- 
ing longitudinal force, according to the definition of the width b', remains 
unchanged and also the magnitude of the moment is preserved, because the le- 
ver arm of the forces in the beam has remained constant. Hence, for the 
"effective width" b, the following holds true: 

b 

b' = ~     ardx 
"mj 



After carrying out the integration, one obtains the simple expres- 

sion 

v = 
b1 _ J_   sin 2ab + sinh 2«b 

~ ab  2 + cos 2ab + cosh 2«b 
M 

The practical application is as follows: First, one determines 

the effective widths of the upper and lower flange and thus one obtains an 

ideal cross section with reduced flange widths. The determination of the 

stresses c  in the curved beam is based on this ideal cross section. For 

these stresses the following holds true as is generally known* 

TV M 
RF 

Mv R 
R + v [5] 

Figure 8 

■ ? «If 

S   v 

I t * 

Figure 9 

Herein, N is the longitudinal force and M is the moment referred 

to the center of gravity of the cross section (M is positive if there is 

tension on the inner surface, R is the radius of curvature of the gravity ax- 

is (Figure 9), v  is the distance from the center of gravity of the cross sec- 

tion, Z the expression 

' J      R + v dF [6] 

For the cross sections composed of rectangles which occur in actu- 

al practice, one can find Z by adding and subtracting the parts of the indi- 

*Cf. H. Müller-Breslau: "Die Graphische Statik der Baukonstruktionen" (Graphical Statics of 

Building Constructions), Vol. II, Section 2, 2nd edition, page 368. 



vidual rectangles.    For such cross sections, the following relationship holds 
true: 

Z = /?3XZb*'l0gnat Z~FR2 t6'] 
In this formula, P is the total area of the cross section, w   and w 

1        2 
are the distances of the upper and lower sides of the rectangle from the cen- 

ter of curvature, b is the width of the rectangle. In Figure 9, b and w are 

indicated for the upper flange. 

If R is greater than twice the height of the beam, one can, with 

very good approximation, substitute the moment of inertia J for Z so that 

N       M        Mv       R 
d = ■ [5'J F      RF        J      R+v 

The extreme fiber stresses calculated in the manner indicated are 

the maximum values of the stress which actually occur. They occur directly 

above the web. In the direction away from the web the extreme fiber stresses 

<rx decrease, and, indeed, according to the same law as the ä .    The numerical 

determination of the a~x  from the rather complicated Equation [3'] is no long- 

er necessary, either for the determination of the maximum extreme fiber stress 

or elsewhere. 

There still remains the calculation of the magnitude of the second- 

ary bending stresses in the projecting parts. The moment per unit of'length 

of the flange is at the point of fixation 

b 

M' = — / x <7V dx 
o 

If one carries through the integration and if it is considered 

that the resisting moment of the flange is W = —, the bending stress <?<  re- 

sults in the form ° 

_        cosh 2ab - cos 2ceb 

2 + cosh 2ab - cos 2«b 

Since a' depends on <Fm, we must, in determing the stress in the 

ideal cross section, also calculate the stress 0 , i.e. the stress at the 

distance -^ from the extreme fiber, in addition to the extreme fiber stress. 

In determing the longitudinal shear stresses and transverse stresses 

transmitted by the collar rivets (Halsnieten) of riveted beams, the ideal 

cross section should again be used, as the decrease of the longitudinal stres- 

ses in the projecting parts of the cross section is taken into account in this 

manner. From Equation [5] the value of the longitudinal shear stress per unit 



of length can be approximated as 

t = Q JL  i Si* 
RF  "r Zr 

[8] 

R, P, and Z have the same significance as in Equation [5]; Fi and 

S represent area and static moment of the flange of the ideal cross section 

referred to its gravity axis, Q is the shearing force and r the radius of 

curvature of the flange axis. The transverse force per unit of length with 

the same designations is 

M 
RF -M Zr2 [9] 

The composition of these two'forces results in the total force 

transmitted by the,collar rivets. 

In the case of beams with face plates the upper rivets (Kopfniete), 

besides being subjected to the longitudinal shear stress which is calculated 

according to Equation [8], are subjected to additional stresses due to the 

secondary bending of the flanges. These rivets have to take the total shear 

stress in the horizontal flange joints. If the calculations are based on the 

most unfavorable assumption that the joint lies in the center, then the shear 

stress per unit of length is 

3 f = 
-/ d 

dx=Yd-M' 

wherein M1 is the bending moment determined above. 

d 

Finally there results 

f = f •■ 
[10] 

ft  is the coefficient indicated in Equation [7]. 
For the practical calculation, the values of r and ft  are represent- 

ed as functions of ^ in the following table. Herein, d is the flange thick- 

ness, b the width of the projecting flange, r the radius of curvature of the 

flange. 

Table for Calculating the Effective Widths bj_ = vb 
and the Additional Bending Stress a' = no m 

b2 

rd 
0 0.1 0.2 0.3 0.1+ 0.5 0.6 0.7 0.8 0.9 

V 1 .000 0.994 0.977 0.950 0.917 O.878 0.838 0.800 0.762 0.726 

M 0 0.297 O.580 0.836 1.056 1.238 1.382 1.495 1.577 l .636 

b2 

rd 
1 .0 1.1 1 .2 1.3 1.4 1-5 2.0 3.0 4.0 5.0 

V 0.693 0.663 O.636 0.611 O.589 O.569 0.495 0.414 O.367 0.334 

M 1.677 1.703 1 .721 1.728 1-732 1.732 1.707 1 .671 1.680 1.700 



Let us point out once more that b represents the width of only 

the projecting part of the flange; we are justified in deducting even a part 

of the fillet (see example in Figure 10). Likewise, the reduction by v, 

refers only to these projecting parts so that, for example, the angle legs* 

adjoining the web remain fully effective. One difficulty presents itself 

when the rivet deductions are considered. The simplest procedure is to re- 

duce also the rivet deductions in the projecting parts by v. 

Let us point out that in the foregoing derivation an essential 

factor was neglected. In setting up Equation [l ] and (1 '] the calculation 

of the elongations 7m and 7^ was performed in such a manner that a linear 

condition of stress was assumed to be present although,in addition to the 

stress <rx,  there were still the stresses <r< perpendicular to a  . If this 

had been taken into account, the derivation (as well as the final result) 

would have become considerably more complicated as in that case the distri- 

bution of the stresses ax  over the flange thickness d could no longer have 

been considered uniform. Furthermore, in setting up Equation [2] it was not 

taken into account that ~ because of the impeded transverse elongation — 

m* _ i J should correctly be substituted for J, wherein-I is Poisson's ratio. 

This second error of neglect actually would not have been necessary since it 

is not at all difficult to introduce the factor mg
m_ 1 into the calculation. 

It will be seen, however, that this second error of neglect is partially com- 

pensated for by the first. 

I have carried out the more exact calculation and, in order to 

have a basis for comparison, I have considered the reduced stress as the 

measure of working stress of the material. The exact calculation always 

yields lower working stresses than the foregoing method of calculation; as a 

matter of fact, the differences A  in percentages amount to : 

b2 

rd 
= 0.0 

0 

T—m 

h,d-ZO 
MAVA 

r-2.5 

 ■* 

I ,,        ,1 

■1.2 

A-13J> . 

. inn i 

0.1 

8.3 

17.« 

0.2     0.3 

14.8    14.9 

0.4 

6.3 

0.5 

6.1 

0.6 

5.7 

1.0 

4.7 

5.0 

4.3 

Hh 

30.0 
i     i 

Figure 1 0a Figure 1 0b 

Numerical example: An 

IP 30 with a radius of curvature 

R = 40 cm (measured to the center of 

gravity) is to be subjected to the 

moment M = -7.5 tm and the longi- 

tudinal force N=-10t;d=2.0cm 

(Figure 10a); the width of the pro- 

jecting parts, if half the fillet is 

deducted, amounts to b = 13.5 cm; 

the radii of curvature of the flange 

♦Translator's note:    This term apparently refers to the case of a face plate riveted to the web by 
means  of angle members. 



axes are rQ = 5^ cm, ru = 26 cm* 

I 

For the upper flange JL = i.69,   * = 0.523,   ^ = 1.722, 

For the lower flange _*!r = 3,50>   * = 0.390,   ,« = 1.675 
r a 

The flange widths of the ideal cross section are 

B0 = 2 • 13.5 ■ 0.523 + 1.2 + 1.8 = 17.4 cm, 

S„ = 2-13.5-0.390 + 1.2 + 1.8 =13.5 cm 

In view of this sharp curvature, the reduction is quite consid- 

erable. The ideal cross section is indicated in Figure 10b. We calculate 

the quantities F and Z by neglecting the fillets. 

F= 91.4 cm2 

The displacement of the center of gravity amounts to 

2(17.4-13.5)-14.0_11._ 
e—     91.4 

The radius of curvature R measured to the new gravity axis is therefore 

/? = 41.16cm 

If the division into rectangles is performed in such a way that 

two small rectangles are deducted from each side, Equation [6'] yields 

Z = 41.163 17.4 • log nat || — 3.9 • log nat -=- — 12.3 • log nat -^ — 41.162 • 91.4 = 23,700 cm* 

Hence, according to Equation  [5],  the surface stresses are 

„  _      J°. a. _ZSL_+-™-. 41.16- 4?- = + 0.419 t/cm2, rf
0 = — 9O   '   41.16-91.4 + 23,700 55 

„  -_J^+  _™ ™— 41.16--^ = -0.751 t/cm2 

"«"ÖL? + 41.16-91.4       23,700 25 

We still need the stresses at the distance -f- = 1 cm from the upper 

or lower surface respectively in order to be able to calculate the additional 

bending stresses. According to Equation [5] with vQ = 12.84, vu = -15-1 6 cm 

in the upper flange -äm = + 0.401 t/cm2, 

in the lower flange dm =- 0.669 t/cm2 

Hence, the additional bending stresses <r< = u^m  on the external 

surfaces amount to 
<t'0 = 1.722 • 0.401 = + 0.691 t/cm2, 

</'„ = 1.675 - 0.669 = + 1.121 t/cm2 

"Translator's note:     The subscripts o and u apparently stand for   'oben'  and  'unten', meaning 
'above'  and   'below', viz upper and lower radius. 
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If one uses the reduced stress   arei = rf| — o,30an,  as determining the 

working stress, it follows that 

"or* = °-691 — 0.30-0.419 = 0.565 t/cnu, 
"««n = ,-121 + 0-3° -0.751 =1.3461/cm2 

For the sake of comparison, let us calculate the same case accord- 

ing to the method usually employed in steel construction. 

According to Figure 10, 

Z = 40= 

/='=154cm2) 

30.1ognat-||-28.8.1ognat-^ — 402-154 =28 720 cm*, 

10   j.    75°     ,   750.40     15 
154 + 40T54 + "2872Ö ' ~55~= + °'322t/cm ■ 

10 750 750.40     15 
+ ml[; — -öö-^STT • -HP- = — 0.570 " 154 T 40.154      28 720 ' 25 

The stresses ö"   are now m 

in the upper flange    7OT = +0.307 t/cm2, 

in the lower flange    Tm = _ 0.526 t/cm2 

For the secondary bending stresses the following formula applies: 

r    ' 2        3 62 - 
a = — z=z ■ • // 

eP rd     "•' 
6 

hence 

a'0 = 5.07  • 0.307 = + 1.557 t/cm2, 

</'a = 10.50-0.526 = + 5.523 t/cm2 

whereby the reduced stress on the inner surface is obtained as 

tfred = 5.523 + 0.30 • 0.570 = 5.694 t/cm2 

which is much higher than permissible, whereas the actual stress amounts to 

only 1 .35 t/cm2. f 

As this example shows, the more exact calculation entails quite a 

considerable economy in the case of sharply curved beams. 

NAVY-DPPO PRNC, WASH.. D.C 


